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Summary

Stereo imaging velocimetry is a fluid physics technique
for measuring three-dimensional (3D) velocities at a
plurality of points. This technique provides full-field 3D
analysis of any optically clear fluid or gas experiment
seeded with tracer particles. Unlike current 3D particle
imaging velocimetry systems that rely primarily on laser-
based systems, stereo imaging velocimetry uses standard
off-the-shelf charge-coupled device (CCD) cameras to
provide accurate and reproducible 3D velocity profiles
for experiments that require 3D analysis. Using two
cameras aligned orthogonally, we present a closed math-
ematical solution resulting in an accurate 3D approxi-
mation of the observation volume. The stereo imaging
velocimetry technique is divided into four phases: 3D cam-
era calibration, particle overlap decomposition, particle
tracking, and stereo matching. Each phase is explained
in detail. In addition to being utilized for space shuttle
experiments, stereo imaging velocimetry has been
applied to the fields of fluid physics, bioscience, and
colloidal microscopy.

Introduction

Stereo imaging velocimetry (SIV) is a new, affordable
method for obtaining quantitative, three-dimensional (3D)
flow information from any transparent liquid, gas, or air
experiment seeded with tracer particles. Until recently,
accurate flow information of this kind was very difficult
to obtain and often required the use of sophisticated,
dedicated laser-based measurement systems, which can
lead to added safety concerns as well as increased costs.
SIV provides a nonintrusive means for measuring 3D

fluid velocities at many points and at high frame speeds by
using charge-coupled device (CCD) video cameras and
artificial neural-network-based computational algorithms.
SIV, which was developed for NASA’s microgravity
science experiments as well as industrial applications, is
the world’s first 3D full-field quantitative and qualitative
diagnostic tool (McDowell and Glasgow, 1999),

A typical SIV system consists of at least two CCD
cameras, oriented 90° with respect to each other (ortho-
gonal), observing an experiment that has been seeded
with neutrally buoyant tracer particles that are imaged
as the experiment is run. Each camera records two-
dimensional (2D) data of the motion of the tracer particles
in the observation volume, and 3D data are obtained by
computationally combining the 2D information. Prior to
running an experiment, the observation volume must be
calibrated in order to generate a 2D to 3D mapping of the
experiment. Once the experimental data are captured, the
data are optimized by performing centroid determination
with overlap decomposition, which increases the particle
yield by separating overlapping particles into constituent
particles. These data are used to perform particle track-
ing and stereo matching, resulting in the calculation of
3D velocity vectors. A description of each phase and
examples follow. In addition, a symbols list is provided
in the appendix.

Three-Dimensional Camera Calibration

Three-dimensional camera calibration is a process by
which one determines the geometrical and experimental
parameters for a particular experimental chamber and
imaging system. The geometrical parameters are the
internal camera characteristics, such as the focal length
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and pixel size. The experimental parameters are the
orientation of the cameras and chamber relative to a
world coordinate system, the refractive characteristics of
the system, and any lens aberrations or distortions present
in the cameras. Camera calibration is the most important
aspect of any machine vision experiment since it serves
as a lower limit for determining system accuracy and
permits us to make the jump from qualitative to quanti-
tative data. The nomenclature of the SIV 3D camera
calibration is shown in figure 1.

Following the steps outlined by Bethea et al. (1997) in
analyzing the stereo imaging geometry shown in figure 1
and utilizing a known physical model and calculations
using a theoretical model, one can determine the camera
calibration error associated with a typical SIV experi-
ment. In their experimental validation of a typical 3D
camera calibration, Bethea et al. (1997), calculated the
theoretical camera calibration accuracy to within 1.3
pixels and an experimental camera calibration to within
3.43 pixels. This indicates that the camera calibration

Figure 1.—Camera calibration nomenclature, right camera perspective (left camera is analogous).
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As explained in detail by Bethea et al. (1997), the right-camera calibration equations are as follows:

(1)

and the left-camera calibration equations are as follows:

(2)

where A0 = dR, A1 = (CRDR/fR)cos ϕ, A2 = (CRDR/fR)sin ϕ, CR =  camera-dependent constant with units in milli-
meters per pixel, and so forth.

technique can accurately calibrate a 3D volume to within
a typical particle size.

Calibration is performed using a target containing
calibration points at known locations inserted into the
experiment chamber and imaged by the right and left
cameras. Two-dimensional calibrations are separately
performed for the right and left cameras and then com-
bined to form a 3D calibration. For each 2D calibration,
it is possible to define an equation from the known
absolute coordinates (xi, yi, zi) to the pixel coordinates
measured by the camera, with parameters including

the rotation, magnification, pixel size, and aberration
coefficients of the camera. The known absolute coordi-
nates of the calibration points and the measured pixel
locations are used as input to a least-squares data-fitting
procedure to solve for the calibration coefficients, Ai, Bi,
Ci, and Di, listed in equations (1) and (2). Once the
calibration procedure is complete, the absolute coordi-
nates (xj, yj, zj), of a seed particle entrained in the flow can
be determined from its pixel positions (xR, zR) and (yL, zL)
on the camera focal planes (see Bethea, 1996).
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Particle Overlap Decomposition

After applying standard image preprocessing tech-
niques, such as threshold, that separate objects from the
background, we have images consisting of objects (i.e.,
particles) that need to be accurately identified. We first
calculate the intensity-weighted center of mass of each
object by using a technique described by Miller et al.
(1994). Identification of the intensity-weighted center of
mass of each object is important in establishing the true
geometrical center of each object. The next step is to
calculate and classify the plurality of each object, which
we call overlap decomposition. Overlapping particles are
a function of the degree to which the flow is seeded (data
density or volume fraction of particles). They cause
inaccurate centroid locations if the objects are not prop-
erly identified as consisting of more than one particle.
This improper identification not only loses particles, but
particle centroids are not accurate for any of the consti-
tuent particles. Hence, any miscalculations of centroid
locations will result in a direct miscalculation of 2D
velocities, at the least, and may lead to incorrect matches
when stereo matching is performed, which will lead to
large errors when 3D analysis is performed (see Guezen-
nec and Kiritsis, 1990).

Our feature-based approach to overlap decomposition
uses the major axis of the bounding ellipse and the
circumference of the multiparticle object to determine the
number of constituent particles and their respective loca-
tions. In general, the probability that the object region is
composed of multiple overlapping particles increases as
the circumference and major axis increase. This provides
the basis for our overlapping particle algorithm. We have

used many synthetic and real images to obtain the data
required to empirically derive equations that describe
these functional relationships. In our experiments, which
were conducted in a constant volume with reasonable
seeding densities on the order of 10 percent or less (higher
densities begin to inhibit the flow), it is statistically
improbable that an object region will be composed of
more than three overlapping particles. Thus, the probabil-
ity relationships between the major axis or circumference
and the number of particles in the multiparticle objects
were determined for up to three overlapping particles. In
addition, both the major axis of the bounding ellipse and
the circumference vary linearly with respect to the multi-
particle object radius. This fact is significant because the
probability relationships can be “learned” for one size of
particle and be transposed to other experiments through
function normalization (see Pao, 1989).

The major axis length requires an elliptical approxima-
tion of the object region. We accomplish this using the
bounding ellipse algorithm presented by Haralick and
Shapiro (1992). In addition to obtaining the major axis
length, the algorithm finds the minor axis length and the
orientation of the major axis with respect to the column
axis of the CCD array. These data are essential to the
decomposition of the object region into constituent cen-
troid locations. The probability that an object region
consists of a single, double, or triple particle can be
obtained by following the extraction of the feature vector
(major axis length, circumference). This is accomplished
by entering the features into the empirically derived
probability equations described in the following para-
graphs and shown in figure 2. In all equations, x is the
value of the feature.

Figure 2.—Probability relationships for a single, double, and triple object.
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The probabilities of a feature being a single, a double,
or a triple particle are found for each feature indepen-
dently, and then the results are combined. Because the
circumference of the object is an exact measurement and
the major axis is an approximation to the bounding
ellipse, the circumference is given 50 percent more
influence in the final classification.

The probability relationship equations have parameter
values (q, b, t, and c) that must be defined in order to
complete the algorithm. These parameters were deter-
mined by extensive training of an artificial neural net-
work. They were optimized on the basis of the imaged
size of particles from the training set (168-µm-diameter
particles with an average imaged diameter of 2.1 pixels).
We used the following values for q, b, t, and c:

Circumference

q = –8.5 t = –0.16 q
b = –16.5 c = –t

Major axis

q = 4.0 t = –0.14 q

b = –7.3 c = –t

The probability curves can be determined for any
experimental training set, and once calculated, the maxi-
mum of the three probabilities can be used to determine
the number of overlapping particles contained in the
object. We can decompose into constituent centroid
locations by using the centroid of the object, the major
axis length, the minor axis length, the number of overlap-
ping particles, and simple geometric relationships.
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We tested our algorithm using synthetic data sets con-
taining 50, 100, 150, and 180 particles  (sample single
images from data sets containing 100 and 180 particles
are shown in figures 3 and 4) and on a random sample

from a real data set containing approximately 200 par-
ticles (five consecutive sample images are shown
in fig. 5). The results of the synthetic data experiment are
given in table I, and the results for the real data are given
in table II. The percentage of particles missed without
using our overlap decomposition routine ranged from
4.4 to 12.1 percent, which can lead to significant particle
identification errors.

It should be noted that the polystyrene particles used
in this experiment do not bond well to each other and,
therefore, have a relatively low adhesion property. Using
particle materials with significant adhesion properties
would effectively increase the detected particle sizes and
negatively skew the results.

Figure 3.—Synthetic data sample image
   (100 particles).

Figure 4.—Synthetic data sample image
   (180 particles).
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Figure 5.—Real image data from testbed experiment (five-frame sequence of approximately 200 particles).

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5
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Particle Tracking

Particle tracking determines the motion of particles in
either two or three dimensions by measuring the incre-
mental distances moved by each particle between each
frame. The success of a particle-tracking algorithm rests
on several things: how heavily the flow is seeded, the
frame rate of the image-acquisition hardware, and the
velocity of the particles. If the flow is heavily seeded, it
becomes more difficult to follow the motion of individ-
ual particles over time. The frame rate and particle
velocity issues are intertwined; they relate to the problem
of how many pixels a particle will move between con-
secutive frames. Although extremely slow velocities can
be a problem because, eventually, the quantization errors
inherent when using CCD cameras may make motion
appear where none exists, this can be treated by slowing
the frame rate so that significant motion takes place
between frames. This technique is applicable when the
flow is slow and uniform. High velocities present a more
serious problem because current technology limits image
acquisition and storage to 30 frames/sec for standard
off-the-shelf cameras. The limitation this imposes on
velocity depends on the configuration of the system,
including the magnification and field of view. For exam-
ple, the particle tracker can tolerate up to 30 particle
diameters of motion between frames (if the field of view
is at least this large). For particles spanning three pixels
in diameter when imaged (the minimum recommended)
and a frame rate of 30 frames/sec, this translates into a
maximum velocity of 2700 pixels/sec. To translate this to
a real-world value, we must take the magnification of the
system into account. If the real-world size of a particle is
300 µm (0.03 cm) and its imaged size is 3 pixels, we have
a scaling factor of 0.01 cm/pixel, giving a maximum
velocity of 27 cm/sec.

Using information about the maximum expected
velocity, we link particle identities through four frame
sequences, establishing their paths of motion in the
process. Our particle-tracking technique uses an adap-
tive, guided, evolutionary neural network with simulated
annealing to arrive at a globally optimal assignment of
tracks (see Crouser et al., 1995). The neural network is
“guided” both by the minimization of the search space,
through the use of limiting assumptions about valid
tracks, and by a strategy that seeks to avoid high-energy
intermediate states by eliminating overlapping tracks that

can trap the neural network in a local minimum. A
stochastic search algorithm is used to further reduce the
chance of the neural network being trapped in an energy
well. Global optimization is achieved by minimizing an
objective function that includes both track smoothness
and particle image utilization parameters.

Optimization begins by randomly choosing selections,
called parents, from a database of complete sets of first
guesses as to possible track assignments. These early
parents are poor solutions and need to be optimized. We
do this by randomly selecting one or more tracks within
a parent, changing the track(s), and calling the resultant
modified solution a child. Several children per parent are
generated to create a family. Families evolve when a new
generation of parents is chosen from among the existing
family members. The system error (the objective func-
tion to be minimized) is computed for each child, and the
member of a given family with the lowest system error
becomes the new parent. The process is repeated over
many generations until an acceptable solution is found or
until the families stop evolving. The latter can occur
because the best solution was found or because a local
minimum in the system error or an energy well was
found. Figure 6 describes how we determine a valid track
pattern.

System error is a relative measure of the acceptability
of a given state. Ideally, every particle in every frame
should be assigned to a single track with the assumption
that the particle overlap decomposition algorithm has
correctly resolved overlapping particles into distinct
objects. This is expressed in the system error by a
“particle_usage error” term, which is multiplied by a
scaling factor based on the particle size termed
“usageCoeff.”

Particle utilization by itself is not enough information
to determine correct tracks. The only other information
available is track straightness and track smoothness
(fig. 7). Tracks are biased both by how straight they are
(an assumption of zero acceleration when estimating the
particle position in frame 3) and by how well the fourth
particle in the track conforms to the position predicted for
it by a pair of parametric quadratic equations in the x and
y directions. These equations are derived from the pre-
ceding three particles in that track. The former error is
referred to as the “track straightness error,” whereas the
latter error is referred to as the “track smoothness error.”
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Figure 6.—Schematic of how potentially valid tracks are identified. An empty search region 
   terminates a track fragment. In this example, two valid tracks are identified for the original 
   particle. The process is continued until only the valid track remains or until an energy well is 
   encountered.

Image frame 1 Image frame 2 Image frame 3 Image frame 4

Incomplete
track is rejected

Project image frame 1 position onto image frame 2
Project constant velocity onto image frame 3
Project constant acceleration onto image frame 4
Search region

Figure 7.—Track errors, where ∆3 measures the difference between the actual and estimated 
   position (based on an assumption of zero acceleration) of a particle in frame 3, ∆4 measures 
   the difference between the actual and estimated position (based on an assumption of con- 
   stant acceleration) of a particle in frame 4, est is the estimated position of a particle, id is 
   the track identification number, and maxR and minR are the maximum and minimum radii. 
   (a) Track straightness error. (b) Track smoothness error.
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Thus, the equation for system error becomes

system_error = track_error + usageCoeff (particle_usage_error)

where

track_error ∑
=

1

1

N

j

f (track_straightness_error[j], track_smoothness_error[j]

N1 number of tracks (i.e., the number of particles in frame 1)

f () penalty function defined as a mapping from the parameters shown, with
–2.0 < f( ) < 2.0 (see fig. 7)

usageCoeff weighting of the usage error relative to the track error

particle_usage_error ∑∑
= =

F

f

N

j

f

1 1

 | assigned_particle_usage[f, j] – 1 |

F number of frames in a track

Nf number of particles in a frame f, 1 ≤ f ≤ F = 4

assigned_particle_usage[f, j] the number of times particle j in frame f appears within any track from a
particular assignment of tracks

Figure 8 shows examples of typical left and right
experiments of a 3D experiment image before parti-
cle tracking. Following preprocessing, the centroid-
determination/overlap-decomposition algorithm was

applied to these images to find the particles, decompose
them, and determine their centroids. Tables III and IV
give the overlap decomposition analysis of the left and
right images. The data files resulting from the overlap

Figure 8.—Typical left and right image files.
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TABLE V.—TWO-DIMENSIONAL TRACKING RESULTS FOR THE LEFT IMAGE DATA FILE
Sequential

index
Tracking index

(four-frame sequence)
0 0 0 0 0

Sequential
index

Tracking index
(four-frame sequence)

Sequential
index

Tracking index
(four-frame sequence)

1 1 1 1 1 31 31 30 30 30 61 61 61 58 60
2 2 3 4 4 32 32 31 31 35 62 62 63 59 61
3 3 2 2 2 33 33 32 33 36 63 63 64 60 63
4 4 4 3 3 34 34 33 35 32 64 64 62 61 63
5 5 5 5 5 35 35 39 38 41 65 65 66 62 64

6 6 6 6 6 36 36 34 32 33 66 66 67 63 65
7 7 7 7 8 37 37 38 36 37 67 67 68 66 68
8 8 8 8 7 38 38 36 37 38 68 68 69 64 66
9 9 9 9 9 39 39 35 34 31 69 69 65 67 62

10 10 10 11 12 40 40 37 32 34 70 70 70 65 67

11 11 11 10 10 41 41 40 41 42 71 71 71 68 69
12 12 12 12 11 42 42 42 40 40 72 72 73 71 70
13 13 13 13 15 43 43 41 39 39 73 73 74 70 72
14 14 14 14 13 44 44 43 43 44 74 74 75 72 73
15 15 15 17 17 45 45 45 45 47 75 75 77 73 77

16 16 16 15 14 46 46 44 42 43 76 76 72 69 71
17 17 17 16 16 47 47 48 47 49 77 77 77 74 77
18 18 18 18 18 48 48 46 44 45 78 78 80 78 80
19 19 19 19 20 49 49 47 46 46 79 79 80 78 80
20 20 22 22 24 50 50 49 48 48 80 80 78 76 76

21 21 21 20 19 51 51 51 49 51 81 81 79 75 75
22 22 20 21 21 52 52 50 50 50 82 82 81 79 81
23 23 23 23 22 53 53 53 51 52 83 83 82 77 78
24 24 24 24 23 54 54 54 52 54 84 84 83 77 78
25 25 25 25 25 55 55 55 52 53 85 85 84 80 79

26 26 –99 –99 –99 56 56 56 53 55 86 86 –99 –99 –99
27 27 26 26 26 57 57 57 54 56
28 28 27 27 27 58 58 58 55 57
29 29 29 28 28 59 59 60 57 59
30 30 28 29 29 60 60 59 56 58

decomposition were used as input to the tracking
algorithm. Tables V and VI give the particle tracking
results for the left and right images.

Stereo Matching

Stereo matching determines which of the many particle
tracks in a pair of synched images from the two cameras

represent the same particle track photographed from
different perspectives. Given two sets of 2D tracks, one
set from each of two orthogonal views, the stereo-
matching module provides the ability to stereo match the
tracks and determine a globally optimal solution (fig. 9).
This module uses an evolutionary neural network model.
Optimization error is taken to be the sum of the squared
vertical displacements (in pixels) between correspond-
ing particle images, on a frame-by-frame basis, matching
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TABLE VI.— TWO-DIMENSIONAL TRACKING RESULTS FOR THE RIGHT IMAGE DATA FILE
Sequential

index
Tracking index

(four-frame sequence)
0 0 0 0 0

Sequential
index

Tracking index
(four-frame sequence)

Sequential
index

Tracking index
(four-frame sequence)

1 1 1 1 1 31 31 29 30 29 61 60 59 59 60
2 2 4 4 4 32 32 30 31 32 62 61 60 60 62
3 3 2 2 2 33 33 32 35 34 63 62 61 61 61
4 4 3 3 3 34 34 37 38 37 64 63 62 62 63
5 5 5 5 5 35 35 34 36 36 65 64 64 64 67

6 6 6 6 6 36 35 36 33 30 66 65 65 63 64
7 7 8 8 8 37 36 33 39 39 67 66 63 65 66
8 8 7 7 7 38 37 31 32 31 68 67 66 66 65
9 9 9 9 9 39 38 35 37 35 69 68 67 67 68

10 10 11 11 12 40 39 38 34 33 70 69 68 68 68

11 11 10 10 10 41 40 40 41 43 71 70 69 69 70
12 12 12 12 11 42 41 44 45 47 72 71 70 70 72
13 13 13 14 15 43 42 39 40 38 73 72 71 71 69
14 14 14 13 13 44 43 41 41 42 74 73 73 72 74
15 15 17 17 17 45 44 43 43 41 75 74 72 70 72

16 16 15 15 14 46 45 45 44 44 76 75 75 74 76
17 17 16 16 16 47 46 42 43 40 77 76 74 73 75
18 18 18 18 18 48 47 46 46 45 78 77 77 75 78
19 19 –99 –99 –99 49 48 47 47 46 79 78 78 77 77
20 20 19 20 20 50 49 48 48 48 80 79 76 78 79

21 21 21 23 23 51 50 49 49 49 81 80 79 76 73
22 22 20 19 19 52 51 50 50 50 82 81 80 79 80
23 23 23 21 21 53 52 52 52 52 83 82 81 80 81
24 24 22 22 22 54 53 51 51 51 84 83 82 81 82
25 25 24 24 25 55 54 53 53 53 85 84 83 82 83

26 26 24 25 24 56 55 54 54 54 86 85 –99 –99 –99
27 27 25 26 26 57 56 55 55 56 87 86 –99 –99 –99
28 28 27 28 27 58 57 56 56 55
29 29 26 27 26 59 58 58 58 58
30 30 28 29 28 60 59 57 57 57



14 NASA/TP—2004-213112

a given track from the left view with one in the right view.
This is similar to the approach taken by Guezennec et al.
(1994). A threshold value was chosen for the sum of the
squared errors. Any pair of tracks having an error exceed-
ing this value was rejected. Table VII lists the stereo-
matching data file when stereo matching the left and right

images. The output from the stereo-matching technique
can be used as a measure of how successful the tracking
algorithm may have been since, ideally, tracks identified
in one view should each match exactly with a unique
track in the orthogonal view.

Figure 9.—Stereo matching of a track that appears in the 
   right and left orthogonal camera views. CCD, charge-
   coupled device camera.

Left camera CCD plane
(multiple time exposure)

Right camera CCD plane
(multiple time exposure)

Optical ray

Near intersection point
of two optical rays
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Summary of Results

A new three-dimensional (3D), full-field analysis
technique has been developed for industrial and space
applications. Stereo imaging velocimetry (SIV) will per-
mit the collection of quantitative, 3D flow data from any
optically transparent fluid that can be seeded with tracer
particles. The goal of SIV is to provide a means to
measure 3D fluid velocities quantitatively and qualita-
tively at many points. SIV is applicable to any system
with an optically transparent fluid seeded with tracer
particles. Except for the tracer particles, this measure-

ment technique is nonintrusive. Velocity accuracies are
on the order of 95 to 99 percent of full-field. The system
components of SIV include 3D camera calibration, par-
ticle overlap decomposition, particle tracking, and stereo
matching. SIV has been used successfully for space
shuttle experiments as well as in fluid flow applications
for business and industry.

Glenn Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, May 5, 2004

TABLE VII (continued).—STEREO-MATCHING DATA FILE FOR LEFT AND RIGHT PARTICLE TRACKING DATA

Sequential

index

Tracking index

(four-frame sequence)

Sequential

index

Tracking index

(four-frame sequence)

Sequential

index

Tracking index

(four-frame sequence)

61 64 62 61 63 71 74 75 72 73 81 85 84 80 79

63 62 62 63 73 73 72 74 81 80 79 80

62 65 66 62 64 72 75 77 73 77

67 66 66 65 77 77 75 78

63 66 67 63 65 73 76 72 69 71

66 63 65 66 70 69 69 70

64 67 68 66 68 74 77 77 74 77

67 66 66 65 79 76 78 79

65 68 69 64 66 75 79 80 78 80

68 67 67 68 79 76 78 79

66 69 65 67 62 76 80 78 76 76

67 66 66 65 78 78 77 77

67 70 70 65 67 77 81 79 75 75

69 68 68 68 80 79 76 73

68 71 71 68 69 78 82 81 79 81

72 71 71 69 81 80 79 80

69 72 73 71 70 79 83 82 77 78

71 70 70 72 81 80 79 80

70 73 74 70 72 80 84 83 77 78

74 72 70 72 82 81 80 81
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Appendix—Symbols

Ai, Bi, Ci, Di calibration coefficients

assigned_particle_usage [f, j] the number of times particle j in frame f appears within any track from a
particular assignment of tracks

b, c, q, t parameter values

CR camera-dependent constant with units of millimeters per pixel

D distance between a camera and the face of the chamber

d horizontal distance of a camera axis from the origin

est estimated position of a particle

F number of frames in a track

f focal length of a camera

f( ) penalty function defined as a mapping from the parameters shown,
with –2.0 < f( ) < 2.0

id track identification number

maxR, minR maximum and minimum track search radius

Nf number of particles in a frame f, 1 ≤ f ≤ F = 4

N1 number of tracks (the number of particles in frame 1)

P( ) probability of an object consisting of one, two, or three particles

particle_usage_error ∑∑
= =

F

f

N

j

f

1 1

 | assigned_particle_usage[f, j] – 1 |

track_error ∑
=

1

1

N

j

f (track_straightness_error[j], track_smoothness_error[j])

usageCoeff weighting of the usage relative to the track error

    
X Z YR

i
R
i

L
i

L
i  Z⎛

⎝
⎞
⎠ window coordinates of particle on the right (left) face of the chamber

x value of the feature

xi yi zi absolute x y z coordinates of particle i

    
x z yR

i
R
i

L
i

L
i  z⎛

⎝
⎞
⎠ pixel coordinates of particle i as seen by the right (left) camera

∆ vertical distance of a camera axis from the origin

∆3, ∆4 difference between the actual and estimated position (based on an
assumption of zero acceleration) for particles 3 and 4
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Subscripts

L left camera

R right camera
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